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Abstract. To determine thermal diffusivity of semitransparent media at temperature the
backside temperature rise of a cylindrical sample is subjected to short pulsed heat flux. This
sample is thus heated to certain temperature and temporal temperature variation can be used
to measure the thermal diffusivity. The Maximum A Posteriori (MAP) criterion is used for the
parameter estimation procedure.
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1. INTRODUCTION

The flash method introduced by Parker et al.(1961) has been used for thermal diffusivity
measurement of opaque. As is known, the front side of the sample is irradiated by short pulse.
The temperature at the backside is monitored using thermal detection. It is possible to use the
transient response of materials to identify one or  more thermal characteristics of the medium.
In the case of interaction of thermal radiation with an absorbing, emitting and scattering
medium, the simultaneous conduction and radiation heat transfer problem must be considered.
Compared with the direct measurement of thermal conductivity, the advantages of this
method are simple sample geometry, easy sample preparation and small sample size, as well
as applicability for a wide range of diffusivity values an excellent accuracy and
reproducibility. Also, because very litle time is needed for a single measurement, a wide range
fo temperature can be covered in a short period of time.

The transient heat transfer for an absorbing and emitting medium was investigated by
Ping et al.(1991) and Andre and Degiovanni (1995). The scattering property was considered
by Hahn et al.(1997) The aforementioned articles concern the flash method to determinate
thermal or apparent diffusivity. In order to investigate the case of transient coupled
conductive - radiative heat transfer in semitransparent medium is necessary the knowledge of
intrinsic properties such as thermal capacity (ρ.c), refractive index (n), scattering
coefficient (σ), absorption coefficient (κ).

The aim of this study consists in the thermal diffusivity measurement of semitransparent
media from the knowledge of transient temperature taken at the backside of the sample. The



maximum A posteriori estimation (MAP) is used for the minimisation of general non-linear
function.

2. DIRECT PROBLEM

We consider transient simultaneous conduction and radiation in gray, absorbing, emitting,
and isotropic scattering,  plan - parallel. At time t0 = 0, the surface at z = 0 is subject to a heat
pulse on the entire face, while the surface at z = e is kept at a prescribed temperature.

Other characteristics of the model are : a global heat exchange coefficient h is include to
describe the convective-radiative heat losses; the temporal boundary condition is expressed by
converting the heat pulse into a temperature jump for the first half-elementary volume of the
medium. The surfaces are gray and the physical of medium properties are constant. A schema
of the physical system and coordinates is shown in "Fig. 1". The energy equation is taken as
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Fig. 1. Schema of the physical system and coordinates.

Where T is the temperature, Te is the equilibrium temperature, k the thermal conductivity, ρcp

the thermal capacity, r
netq  the net heat flux from the surface and ∇ .qr  the divergence of the

radiation heat flux vector. They are, respectively, determined from
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where n is the refractive index, κ the average absorption coefficient, σ  Stefan-Boltzmann
constant, and n the unit surface normal vector.

The net radiative heat flux r
netq  and the divergence of the radiation heat flux vector

rq.∇ must be determined from the solution of the radiative transfer equation. In this case, the
equation of transfer for radiation intensity along a path s is given by Özisik (1973) as
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where I(s) is the intensity at location s, the extinction coefficient and source term are
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In "Equation (11)", Ω is the unit vector pointing in the radiation direction. The integration
over the solid angle dΩ is done over the intensity at s considering all possible directions.
 Integrating "Eq.(8)" along a path s we get the integral form of the radiation transfer equation
as follows
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The first term on the right in "Eq. (12)" is the contribution of the radiation intensity
coming from the boundary at location s0. The radiation intensity at location s is equal the one
at the boundary reduced by a factor e[-β(s-s0)] due to the absorption and to the scattering along
the integration path.  The second term represents an increase due to the term source
distributed along of the integration path.

The "Equations (1 - 5) and (12)" provide the mathematical  formulation for the radiation-
conduction interaction direct problem in a one-dimensional medium. An iterative process is
needed to solve the problem, because the energy equation, "Eq. (1)", involves the radiation
intensity, while the equation of radiation transfer, "Eq. (12)", requires the temperature profile.

3. METHOD OF SOLUTION

The Sn or the discrete ordinates method (Fiveland, 1987) is used to solve the integral
form of the radiative transfer equation or the radiation part of the problem. The variation law



for the radiation intensity incident on the medium at s0 and at the location s along path to each
discrete direction is established. The semitransparent medium is homogeneous and isotropic,
gray, by a emitting, absorbing and linear-anisotropic scattering bounded emitting, diffusely
reflecting wall, as show the "Figure 2".
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Figure 2 - physical model by radiation  problem.

The discrete ordinates form law of the variation law of the radiation intensity is obtained
by evaluating "Eq.(12)" at each of the discrete direction and replacing the integral term into
"Eq.(11)" by numerical quadrature to give
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where: wm' are the weights associated with each direction Ωm', pm'm the values of the phase
function corresponding to incident direction  Ωm' and to scattering direction Ωm and  Im',m  the
radiation intensity in the discrete direction Ωm'.

In this work, the technique proposed by Carslson and Lathrop (1966) is applied to
calculated the quadrature points and weights.

To determine the distribution of the radiation intensity. The variation law of the intensity
must be established (Da Silva, 1997). This law is established while following the propagation
of the radiation to each direction Ωm, in every element from a point where the intensity is
known. So, one determines the value of the intensity after a distance ∆s. These law is given in
the chosen coordinate system what permits us to determine the distribution of the intensity in
the physical domain without using the equation of classic finite differences . So, if we assume
that I0 is uniform on boundary and S does not vary with z in the distance ∆s, then we can
integrate "Eq.(12)" to find
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As we can see from this equation, the radiation intensity vary along the path s. Even in this
case, we can define the average at the distance ∆s by
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In the specific case of the one-dimensional geometry, the distance ∆s can be expressed in
cartesian coordinates by

m

0zz
s

µ
−

=∆            (16)



now, let us introduced the "Eq. (16)" into "Eq. (14)". Then we get
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Using the expression given by "Eq. (17)" into "Eq.(15)", we find
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This expression provides the average radiation intensity along the distance ∆s. This average
intensity permits us to calculate by iterative process the source term, and therefore the
divergence of radiative flux that will be introduced in the resolution of the energy equation.

When the distribution of the radiation intensity is known, an solution to the energy
equation for the temperature field in medium resulting from the conduction-radiation iteration
and boundaries conditions is determined. The control volume approach is applied to obtain
the finite difference form of the energy equation. Then, the non-linear finite difference
problem is solved iteratively by the Newton-Raphson. Once the temperature field is
determined, it is compared with the guess value used for radiation part of the problem, and the
process is repeated until a specified convergence criterion is achieved. The "Fig. 3" shown
theoretical  backside thermograms for a specific example.
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Figure 3 - Exact temperature of the backside temperature rise obtained for theoretical model.

4. INVERSE PROBLEM

Inverse heat conduction-radiation problem is similar to the  above direct problem except
that the thermal conductivity, thermal capacity and extinction coefficient are considered as



unknown. Experimental backside temperature history of a semitransparent sample is
available. Then, utilising measured temperature data and the exact temperature data can start
the inverse problem. The inverse conduction-radiation problem is then solved by
minimisation the error between the experimentally obtained surface temperature history and
the predicted temperature at backside of the sample. The minimisation is accomplished by the
Maximum A Posteriori estimation (MAP).

5. PARAMETER ESTIMATION METHOD

5.1 Choice of the criterion, model of measurement errors

Apart from a limited number of techniques such as Neural Network (Narenda et al.,
1990) or Kalman filter (Scarpa et al. 1993), most of the parameter estimation procedures
involve a criterion, composed of one or two objective functions, that is being extremized.
Usually the functional, S(β), is quadratic but a Bayesian approach (Idier et al., 1996) can lead
to other forms.
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where Y is the vector of measurements (n x 1), W and U are matrices that depend on the type
of estimator. The dimensions of W and U are (n x n) and (p x p), respectively.
For Ordinary Least Squares (OLS) W=I and U=0.

The Maximum Likelihood (ML) criterion is obtained with W=Ψ-1 and U=0, where Ψ is the
covariance matrix of the measurement errors. Usually, it is difficult to determine the
covariance of all measurement errors but possible to determine their variances. If the
variances are not constant then the ML method gives more weight to the measurements that
have the smallest variances.
The Maximum A Posteriori estimation (MAP) uses not only information on the measurement

errors but also on the unknown parameters: W=Ψ-1,  µ are the a priori values of β and U=V
-1

.
V is the covariance matrix of the prior parameters. µ and U can either come from previous set
of experiments or can be more subjective. The MAP criterion is such that the first component
guaranties, to some extent, the fidelity of the solution to the measurements and that the second
component satisfies some properties known a priori. One can see that if V is small and Ψ is
large then, unless n is great, the information given by the measurements will barely change
the prior values. Consequently the MAP method must be used with caution if the prior
information is too subjective (the results will correspond to the belief of the investigator).

5.2 Choice of the extremisation method

There are many methods for the minimisation or maximisation of general non-linear
functions, among these are exhaustive search, simplex exploration, Gradient methods (Gauss-
Newton, conjugate gradient, Levenberg-Marquart), Iterative minimisation (Alifanov et al.
1995), adjoin method (Jarny et al. 1991), ... which are more or less sophisticated. The choice,
which can lead to discussion that never ends, depends on the number of parameters to be
estimated and to some extent on the structure of the criterion. Most of these methods are
available in computational library (ISML, Numerical Recipes).

The Gauss-Newton method is one of the simplest and most appropriate methods when
the number of unknown parameters is not large say 20. It specifies direction and size of the



correction to the parameter vector. The principle is to find the vector β=b such that all the first
derivatives of the model with respect the parameter is simultaneously equal to zero.

For linear-in-parameter problems, b, the estimated vector of the unknown β is given by
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which for the OLS method, reduces to
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"Equation (20)" shows that the a priori values, µ, are based on the differences between the
measurements, Y, and the model, η=Xµ, calculated with µ as input. This equation also shows
how Ψ and V influences the estimated parameters.

For non-linear-in-parameter problems, X=X(β), and an iterative procedure must be used.
With the superscript (k) as a counter of the iteration, an equation similar to "Eq. (20)," is
obtained
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The iterative procedure starts with an initial guess, β(0), at each step the vector β is
modified until:
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δ is a small number that must be chosen by the investigator (typically 10
-3

) and ξ (< 10
10

)

prevents overflow if ( )βi
k = 0.

For MAP method, β(0) = µ. For OLS or ML methods U = 0, thus the initial guess has no
influence on the final result, it only changes the number of iteration. A good guess facilitates
the convergence. It is highly recommended to start the estimation procedures with several sets
of initial estimates to check that they all converge to the same value. When the matrix (XTWX
+ U) is not well conditioned, modifications to the Gauss-Newton method such as Levenberg-
Marquart method are recommended.

6. EXPERIMENTAL DEVICE AND RESULTS

The experimental thermogram was obtained  in the LEMTA( Laboratoire d'Energétique
et de MécaniqueThéorique et Appliquée). Following, the components of the experimental
basic device used to flash experience is described (e.g. Figure 2).
•  the uniform heat flux is delivered by four linear flash lamp with total surface of the

50mm2. the output permits him to deliver a quantity of energy around 20 kJ/m2;
•  the sample has the cylindrical shape to plane and parallel faces and the thickness can vary

1 to 20 mm and can be diameter of 10 to 50 mm;



•  the system of temperature detection, it is about two needles - dopey P and N - of FeSi2 in
contact separated on the sample that forms an intrinsic thermocouple, the signal is
amplified recorded then by an oscilloscope to numeric memory;

•  The amplifier  convert the current delivered in tension and amplifies the signal;
•   the oscilloscope to numeric memory permits to record thermogram in 12 bits on 4000

points;
•  the heating of the sample involve an airflow what is sustained by fan and electrical

heaters. The hot air circulates in the annular space of the quartz wall whose internal
surface heats the sample by radiation. A thermal insulation in fibbers of ceramics, envelop
the furnace in quartz where the intern temperatures reach thus 1000 K.; and

•  a pump permits to reach a level of pressure of 10-2 to 10-3 Mb. At the time of the
utilisation vacuum, a porthole in quartz transmits the visible radiance of the flash.
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Figure 2 - System Schematic

The classical experience flash for the mesurements of the thermal diffusivity in case of an
semitransparent media. The semitransparent media were ZnS or IRTRAN 2. The sample is
then sandwiched between opaque layers and only the first internal reflection on the rear face
is taken into account.  The typical rear-face thermograms obtained by flash method and
theoretical model recalculated with the diffusivity identificated is showed by "Fig. 3",
showing the effect of heat losses and the residues.
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Figura 3 - The typical rear-face thermograms

The set of measurements is presented in table 1 for three different temperatures. In the
experience were considered heat losses of sample, finite pulse duration, uniformity of the heat



flux and non-variation thermal properties with temperature. The Maximum A Posterior
estimation (MAP) criterion is used to estimate the parameters. The results show that the
identificated diffusivity are good agreement.

Table 1 - Comparison of the Thermal diffusivity
results obtained from two data reduction  procedure.

temperature
(K)

this work LEMTA

298* 8,26.10-6 8,3.10-6

633 2,98.10-6 3,01.10-6

783 2,32.10-6 2,46.10-6

Step time: ∆t = 0.001 ;  21 nodal points
Interval of the identification : 0.001 ≤ t ≤ 0.6

7. Conclusion

The literature has showed that flash method for difusivity estimation is widely used not
only for homogeneous or semi-infinite opaque sample, but also for a wide variety of
materials. This work concern to a semitransparent media and the applicability of the method
flash associated to the Maximum A Posterior estimation (MAP) criterion can be verified at
very good precision.
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